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Background

V = Sym(r, R),

Q = Sym(r,R) T+,

W = V¢ (= Sym(r, C))

Ai(w),..., Ap(w): the principal minors of w € W
T := Q2+ 1V : Tube domain

Classical fact
Put Ag(w) = 1. If w € Tgq, then one has

Ag(w)

Re ———
Ak_l(w)

>0 (k=1,...,7r).

—This result can be generalize to any irreducible symmetric cone.
(Ishi-Nomura 2008)
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Background

V': simple Euclidean Jordan algebra

€2: irreducible symmetric cone of V'
Ta:=Q4+::VCW=1V

Aqi(x)y...,Ap(x): the principal minors of V'

— naturally continued to holomorphic polynomial functions of W

Theorem A (Ishi-Nomura 2008)
Put Ag(w) = 1. If w € Tgq, then one has

Re ———
Ak_l(w)

>0 (k=1,...,7).

Q. Does this property characterize symmetric cones?

A. No (Ishi-Nomura 2008)

Q. How does this property generalize to homogeneous cones?
— Today's topic
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Talking plan

(1) Background
(i) Theorem A
(2) Generalization of Theorem A
(i) Setting and definitions
(ii) matrix realization of homogeneous cones
(iii) known results
(iv) Theorem 1 (generalization of Theorem A)
(3) Characterization of symmetric cones

(i) dual cones
(i) Main theorem (characterization of symmetric cones)
(iii) sketch of the proof
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Setting

V' : finite-dimensional real vector space
2: open convex cone in V containing no entire line
G(Q) := {g € GL(V); g(Q) = Q}

Q is homogeneous < G () acts on  transitively

Assume that €2 is homogeneous

JH : split solvable Lie subgroup of G(f2) s.t.
H ~ Q: simply transitively.

Example

SN = Sym(N, R)

S]"’\} = Sym(V,R)t* = {x € V; z is positive definite}

g € GL(N,R) acts on Sj; by g - x := gzx'g.

Hpn: group of lower triangular matrices with positive diagonals.
— H v acts on S]"\', simply transitively

Hideto Nakashima (Kyushu Univ.) Characterizations of symmetric cones 2015/6/24

5/23



Matrix realization of homogeneous cones (Ishi 2006)
N =ny+ .-+ n,: partition of N € N
Vi C Mat(ny, ng;R): system of vector spaces satisfying
(VO) V;; = RI,,; Fg=1,...,r),
(V) AeVi, BeEVy,; = ABcVy; (3<k<l),
(V2) AeV;, BEVy;j = ABeVy (J<k<I),
(V3) A€ Vi = AA € Vi (J < k).

t ¢
X111 *Xo1 -+ "X
Xkk = Trrln,,

X201 X LtX
: g Xk € Vik
Xr1 Xp2 oo Xop

Py = {X € Zy; X is positive definite} .

Zy={X =

— Py is a homogeneous cone of rank r.

Any homogeneous cone {2 can be realized as some Py,.
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Split solvable Lie subgroup H

H is linearly isomorphic to

Ty,
To1 Too Tkk = etk/2Ink
= . ; (tk € R) C HN.
Tk € Vik

Toy Tz -+ T

The action on Py, is described as h - & = hx th.

Define. f: relatively H-invariant function of Q2
dx: H — R: 1-dim. rep. s.t. f(h-x) = x(h)f(x).

— Jv = (v1,...,1) € R” s.t. x(h) = e¥rt1tTVrir (multiplier).
In particular we have

Vr

f(diag(z1,...,x,)) = x* -+ - @)
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Basic relative invariants

Theorem (Ishi-Nomura 2008)

There exist just 7 relatively H-invariant irreducible polynomials
Ai(x)y...,Ar(x), and Q is described as

Q={xecV; Ai(z) >0,...,A.(x) > 0}.

— Aj's are called the basic relative invariants of (2.
o; = (0j15...,05): multiplier of Aj(x)

(k]
o:= | | =(0jk)1<jk<r: multiplier matrix
(e
multiplier matrix is lower, the diagonal elements are all 1 (Ishi 2001).
We have an algorithm for calculating o (N-. 2014).
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Complexification

W : =V, and Tq:=Q+1V.

H¢: complexification of H.

fc: complexification of a relatively H-invariant function f.
relatively Hc-invariance

“fe(p(h)w) = x(h) fc(w) for Vh € Hcy, w € W
— 3k sit. p(h)w = p(h)w for Vw € W, but x(h) < x(h').
If f is rational, then x is well-defined.

Ai,...,A,: naturally continued to holomorphic poly.
S :={we W; JA;(w) = 0}.

Put Ng:= {h € Hc; diag = I,; (j = 1,...,1°)}.

fe(n - w) = fe(w),
Then fC(diag(.’Bl,...,a}r)) = xlfl ...xﬁr.
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Known results
Proposition (Ishi-Nomura 2008)

(i) For any w € W\S, there exist unique n € N¢ and o;(w) € CX
(j =1,...,7) such that

w = n - diag(a; (w), ..., a,(w)).
(ii) If w € Tq, then one has Reag(w) >0 fork =1,...,r.
— Describe a3 (w), ..., o (w) by using Aq(w),..., A (w).
For u, = € Z", put

al(w) := ag(w)r - - - ap(w)kr,

AT(w) := Aq(w)™ - Ay (w)™,

J
e; == (0,...,0,1,0,...,0).
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Generalization of Theorem A

Theorem 1

Let w € Tq. Then one has aj(w) = Agja_l(w), and hence

ReAgﬁa_l(w) >0 (j=1,...,7).

proof. For each j, we have

Aj(w) = Aj (n - diag(ar(w), ..., ar(w)))
= A; (diag(oq (w), ..., ar(w)))
= al(w)a.ﬂ'l .o ar(w)ajT
= a% (w).

— A%(w) = (a1 (w))™ -+ - (@ (W)™ = o™ (w).

Thus we have a;(w) = a% (w) = Agja_l(w)-
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Case of symmetric cones

V': Euclidean Jordan algebra
Aj(x): principal minors of V'

]
In this case we have o; = (1,...,1,0,...,0) and hence

1 0 1 0
1 1 1 -1 1

o= —> 0o =
1 1 1 0 -1 1

Thus Theorem 1 leads us to the known result:
If w € Q + 2V, then one has

Re Agjcr_l (w) — Re Aj—l(w)_lAj(w)

Aj(w)

— Re ")
Aj_1(w)

> 0.
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Talking plan

(1) Background
(i) Theorem A
(2) Generalization of Theorem A
(i) Setting and definitions
(ii) matrix realization of homogeneous cones
(iii) known results
(iv) Theorem 1 (generalization of Theorem A)
(3) Characterization of symmetric cones

(i) dual cones
(i) Main theorem (characterization of symmetric cones)
(iii) sketch of the proof
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Dual cone

€ : homogeneous cone in V
(+|+) : inner product of V
Dual cone 2* of € is defined to be

Q:={zeV; (x|y) >0foralyecQ\{0}}.

Ai(xz),...,A%(x): basic relative invariants of Q*

the index is determined as the multiplier matrix o,

to be upper triangular

Q is irreducible < ©Q = Q1 @ Q2 implies 1 = {0} or Q3 = {0}.

Theorem (Yamasaki 2014)

Let €2 be an irreducible homogeneous cone.
Then € is symmetric if and only if

{deg A4,...,deg A, } = {deg A],...,deg AT} = {1,...,r}.
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Example

V =83
Q = 87 and Q* = S (symmetric cone)

1 21 I31
V=qx=|x21 T2 xT32|; Tj,Tgj €R
31 I32 I3

The basic relative invariants are described as

Aq(x) = x1, A% (x) = det x,
Asz(x) = 2122 — :c%l, Aj(x) = 3T — m§2,
Az(x) = det x, Aj(x) = x3.

The multiplier matrices is given as

100 111
co=(110], ono=(011
111 001
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Main theorem

Theorem 2

Suppose that €2 is irreducible. Then € is symmetric if and only if

Aj(w) :
(1)ReA—(w)>O for any w € Q + 1V,

Jj—1 .

A;‘('w*) ' (g=1,...,71),
(2) ReA*—(w*)>0 for any w* € Q* + ¢V

J+1

where we put Ag(w) =1 and A7, (w) = 1.
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Key proposition

Proposition 3

Let 7 be a lower triangular matrix of integer elements with ones on the
main diagonal. Assume

Re A% (w) >0 (j=1,...,7)
for any w € Tq. Then one has 7 = o~ 1.

From the condition (1), we obtain
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Algorithm for calculating multiplier matrix

dk:j = dika;j (1 S ] <k S r)

di:=%0,...,0,dit14y...,dp;) (i =1,. LT —1).

Fori=1,...,r — 1, we define I/ = t(lg), JA9Y G =dy..,m)
19 = g (k = i),

19 — a, (l(j) > 0),

l(-k+1)

(k > 4).

Moreover we set €ll = *(e;11,iy...,6r) € {0,137
(¢t=1,...,7—1) by
1 i1l > o,

(k=i4+1,...,7).
0o ifiP =0 T

ki =
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Algorithm for calculating multiplier matrix

Then o is given as
oc=&E 1&_2--- gla

where
I,.1 O 0
E; = 0 1 0
o &l 1,
o1 is described as
ol = (Er1Epa-- &)
—1o—1 -1
- 81 82 r—1
1
—E€21 1

—Ep1 —Epg v 1
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Sketch of the proof

Since
1 1
—€21 1 -1 1
. == ’
—Ep1 —Epgy - 1 0 -1 1

we have (g21,€31,...,6.1) = (1,0,...,0).
Let 1Y = Yda1,...,dr1).
By €21 = 1, one has d2; > 0 and

drl - dr2

By €31 = 0, one has d31 — d32 = 0.
Similarly g1 = 0 implies dg1 — dg2 =0 (k > 3).
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Sketch of the proof

Repetition of this arguments implies that
dii =die =+ =dgp—1 (k=2,...,7—1).
Similarly by o, we obtain
djit1,j=djy2;=-+=dp; (3=1,...,7—1).

Thus there exists the common number d = d; > 0 (5 < k).
By the following theorem, €2 needs to be symmetric.

Theorem (Vinberg 1965)

If dim Vj; = (const), then € is a symmetric cone.
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Counter example (Ishi-Nomura 2008)

a:lIn a,In b
Vi=<x=| al, xI, c |;
th tc x5
Q := {x € V; x is positive definite} .

xr;,a € R
b,c € R® (’

Ai(x),...,Az(x) are given as

Aq(x) = x4, Az (x) = 172 — a2,
Az(x) = z12273 + 2a (b|c) — x3a? — z2|b|? — z1|c

Q is not a symmetric cone if n > 2, but we have

Ap(w) .
Re ———— >0 (weQ+1iV, k=1,2,3).
Ak_l(w)
In this case dim Vo1 = 1, dim V31 = n, dim V3 = n.
Thus we obtain
1
cl=(-1 1
0 -1 1
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