Characterizations of symmetric cones by means of the basic relative invariants

Hideto Nakashima

Kyushu University

2015/6/24

RIMS, Kyoto university

Background

$$egin{aligned} V &= \operatorname{Sym}(r,\mathbb{R}),\ \Omega &= \operatorname{Sym}(r,\mathbb{R})^{++},\ W &= V_{\mathbb{C}} \left(= \operatorname{Sym}(r,\mathbb{C})
ight)\ \Delta_1(w), \ldots, \Delta_r(w) \colon ext{ the principal minors of } w \in W \end{aligned}$$
 $T_{\Omega} := \Omega + i V \colon ext{ Tube domain}$

Classical fact

Put $\Delta_0(w)=1$. If $w\in T_\Omega$, then one has

$$\operatorname{Re}rac{\Delta_k(w)}{\Delta_{k-1}(w)}>0 \quad (k=1,\ldots,r).$$

→This result can be generalize to any irreducible symmetric cone.

(Ishi-Nomura 2008)

Background

 $V\colon$ simple Euclidean Jordan algebra

 Ω : irreducible symmetric cone of V

 $T_\Omega := \Omega + iV \subset W = V_\mathbb{C}$

 $\Delta_1(x),\ldots,\Delta_r(x)$: the principal minors of V

ightarrow naturally continued to holomorphic polynomial functions of W

Theorem A (Ishi–Nomura 2008)

Put $\Delta_0(w)=1$. If $w\in T_\Omega$, then one has

$$\operatorname{Re}rac{\Delta_k(w)}{\Delta_{k-1}(w)}>0 \quad (k=1,\ldots,r).$$

Q. Does this property characterize symmetric cones?

A. No (Ishi-Nomura 2008)

Q. How does this property generalize to homogeneous cones?

→ Today's topic

Talking plan

- (1) Background
 - (i) Theorem A
- (2) Generalization of Theorem A
 - (i) Setting and definitions
 - (ii) matrix realization of homogeneous cones
 - (iii) known results
 - (iv) Theorem 1 (generalization of Theorem A)
- (3) Characterization of symmetric cones
 - (i) dual cones
 - (ii) Main theorem (characterization of symmetric cones)
 - (iii) sketch of the proof

Setting

V: finite-dimensional real vector space

 Ω : open convex cone in V containing no entire line

 $G(\Omega) := \{g \in GL(V); \ g(\Omega) = \Omega\}$

 Ω is homogeneous $\Leftrightarrow G(\Omega)$ acts on Ω transitively

Assume that Ω is homogeneous

 $\exists H$: split solvable Lie subgroup of $G(\Omega)$ s.t.

 $H \curvearrowright \Omega$: simply transitively.

Example

$$\mathcal{S}_N = \operatorname{Sym}(N,\mathbb{R})$$

$$\mathcal{S}_N^+ = \operatorname{Sym}(N,\mathbb{R})^{++} = \{x \in V; \ x \text{ is positive definite}\}$$

$$g \in GL(N,\mathbb{R})$$
 acts on \mathcal{S}_N^+ by $g \cdot x := gx^t g$.

$$\mathcal{H}_N$$
: group of lower triangular matrices with positive diagonals.

 $o \mathcal{H}_N$ acts on \mathcal{S}_N^+ simply transitively

Matrix realization of homogeneous cones (Ishi 2006)

 $N=n_1+\cdots+n_r$: partition of $N\in\mathbb{N}$

 $\mathcal{V}_{lk} \subset \operatorname{Mat}(n_l,n_k;\mathbb{R})$: system of vector spaces satisfying

- (V0) $\mathcal{V}_{jj} = \mathbb{R}I_{n_j} \ (j=1,\ldots,r),$
- $(\forall 1) \ A \in \mathcal{V}_{lk}, \ B \in \mathcal{V}_{kj} \Rightarrow AB \in \mathcal{V}_{lj} \quad (j < k < l),$
- (V2) $A \in \mathcal{V}_{lj}$, $B \in \mathcal{V}_{kj} \Rightarrow A^t B \in \mathcal{V}_{lk}$ (j < k < l),
- (V3) $A \in \mathcal{V}_{kj} \Rightarrow A^t A \in \mathcal{V}_{kk} \quad (j < k)$.

$$\mathcal{Z}_{\mathcal{V}} = \left\{ X = egin{pmatrix} X_{11} & {}^tX_{21} & \cdots & {}^tX_{r1} \ X_{21} & X_{22} & \cdots & {}^tX_{r2} \ dots & & \ddots & \ X_{r1} & X_{r2} & \cdots & X_{rr} \end{pmatrix}
ight. egin{pmatrix} X_{kk} = x_{kk}I_{n_k}, \ X_{kk} \in \mathbb{R}, \ X_{lk} \in \mathbb{R}, \ X_{lk} \in \mathcal{V}_{lk} \end{pmatrix} \subset \mathcal{S}_N,$$

 $\mathcal{P}_{\mathcal{V}} = \{X \in \mathcal{Z}_{\mathcal{V}}; \ X \ \text{is positive definite} \}$.

 $ightarrow \mathcal{P}_{\mathcal{V}}$ is a homogeneous cone of rank r.

Any homogeneous cone Ω can be realized as some $\mathcal{P}_{\mathcal{V}}$.

Split solvable Lie subgroup H

 $oldsymbol{H}$ is linearly isomorphic to

$$\left\{h=egin{pmatrix} T_{11} & & & & \ T_{21} \ T_{22} & & & \ dots & \ddots & \ T_{r1} \ T_{r2} \cdots \ T_{rr} \end{pmatrix}; & T_{kk}=e^{t_k/2}I_{n_k} \ ; & (t_k\in\mathbb{R}) \ T_{lk}\in\mathcal{V}_{lk} \end{array}
ight\}\subset\mathcal{H}_N.$$

The action on $\mathcal{P}_{\mathcal{V}}$ is described as $h \cdot x = hx^th$.

Define. f: relatively H-invariant function of Ω

$$\exists \chi \colon H o \mathbb{R}$$
: 1-dim. rep. s.t. $f(h \cdot x) = \chi(h) f(x)$.

 $o \exists \underline{\nu} = (\nu_1, \dots, \nu_r) \in \mathbb{R}^r$ s.t. $\chi(h) = e^{\nu_1 t_1 + \dots + \nu_r t_r}$ (multiplier). In particular we have

$$f(\operatorname{diag}(x_1,\ldots,x_r)) = x_1^{\nu_1}\cdots x_r^{\nu_r}$$

Basic relative invariants

Theorem (Ishi–Nomura 2008)

There exist just r relatively H-invariant irreducible polynomials $\Delta_1(x),\ldots,\Delta_r(x)$, and Ω is described as

$$\Omega = \{x \in V; \ \Delta_1(x) > 0, \dots, \Delta_r(x) > 0\}.$$

 $ightarrow \Delta_j$'s are called the basic relative invariants of Ω .

$$\underline{\sigma}_j = (\sigma_{j1}, \dots, \sigma_{jr})$$
: multiplier of $\Delta_j(x)$

$$\sigma:=egin{pmatrix} rac{\sigma}{!}\ rac{\sigma}{\sigma_r} \end{pmatrix}=(\sigma_{jk})_{1\leq j,k\leq r}\colon$$
 multiplier matrix

multiplier matrix is lower, the diagonal elements are all 1 (Ishi 2001). We have an algorithm for calculating σ (N-. 2014).

Complexification

$$W:=V_{\mathbb{C}}$$
, and $T_{\Omega}:=\Omega+iV$.

 $H_{\mathbb{C}}$: complexification of H.

 $f_{\mathbb{C}}$: complexification of a relatively H-invariant function f.

relatively $H_{\mathbb{C}}$ -invariance

$$``f_{\mathbb{C}}(
ho(h)w)=\chi(h)f_{\mathbb{C}}(w) ext{ for } orall h\in H_{\mathbb{C}}, \ w\in W"$$

$$o \exists h'$$
 s.t. $ho(h)w =
ho(h')w$ for $orall w \in W$, but $\chi(h) \stackrel{?}{=} \chi(h')$.

If f is rational, then χ is well-defined.

$$\Delta_1,\dots,\Delta_r$$
: naturally continued to holomorphic poly. $\mathcal{S}:=\{w\in W;\ \exists \Delta_j(w)=0\}$.

Put
$$N_\mathbb{C}:=ig\{h\in H_\mathbb{C}; \ \mathrm{diag}=I_{n_j} \ (j=1,\ldots,r)ig\}.$$
 Then $f_\mathbb{C}(n\cdot w)=f_\mathbb{C}(w), \ f_\mathbb{C}(\mathrm{diag}(x_1,\ldots,x_r))=x_1^{
u_1}\cdots x_r^{
u_r}.$

Known results

Proposition (Ishi-Nomura 2008)

(i) For any $w\in W\backslash \mathcal{S}$, there exist unique $n\in N_\mathbb{C}$ and $lpha_j(w)\in \mathbb{C}^{ imes}$ $(j=1,\ldots,r)$ such that

$$w = n \cdot \operatorname{diag}(\alpha_1(w), \ldots, \alpha_r(w)).$$

- (ii) If $w \in T_{\Omega}$, then one has $\operatorname{Re} lpha_k(w) > 0$ for $k = 1, \ldots, r$.
- ightarrow Describe $lpha_1(w),\ldots,lpha_r(w)$ by using $\Delta_1(w),\ldots,\Delta_r(w)$.

For $\mu,\;\underline{ au}\in\mathbb{Z}^r$, put

$$egin{aligned} lpha^{\underline{\mu}}(w) &:= lpha_1(w)^{\mu_1} \cdots lpha_r(w)^{\mu_r}, \ egin{aligned} \Delta^{\underline{ au}}(w) &:= \Delta_1(w)^{ au_1} \cdots \Delta_r(w)^{ au_r}, \ &\ \underline{e}_i &:= (0, \dots, 0, \overset{j}{1}, 0, \dots, 0). \end{aligned}$$

Generalization of Theorem A

Theorem 1

Let $w\in T_\Omega$. Then one has $lpha_j(w)=\Delta^{{arrho}_j\sigma^{-1}}(w)$, and hence

$$\operatorname{Re} \Delta^{\underline{e}_j \sigma^{-1}}(w) > 0 \quad (j = 1, \dots, r).$$

proof. For each j, we have

$$egin{aligned} \Delta_j(w) &= \Delta_j \left(n \cdot \operatorname{diag}(lpha_1(w), \ldots, lpha_r(w))
ight) \ &= \Delta_j \left(\operatorname{diag}(lpha_1(w), \ldots, lpha_r(w))
ight) \ &= lpha_1(w)^{\sigma_{j1}} \cdots lpha_r(w)^{\sigma_{jr}} \ &= lpha_{j}(w). \end{aligned}$$

$$\to \Delta^{\underline{\tau}}(w) = (\alpha^{\underline{\sigma}_1}(w))^{\tau_1} \cdots (\alpha^{\underline{\sigma}_r}(w))^{\tau_r} = \alpha^{\underline{\tau}\sigma}(w).$$

Thus we have $\alpha_j(w) = \alpha^{\underline{e}_j}(w) = \Delta^{\underline{e}_j\sigma^{-1}}(w)$.

Case of symmetric cones

V: Euclidean Jordan algebra

 $\Delta_i(x)$: principal minors of V

In this case we have $\underline{\sigma}_j = (1, \dots, \overset{j}{1}, 0, \dots, 0)$ and hence

$$\sigma = \begin{pmatrix} 1 & & & 0 \\ 1 & 1 & & \\ \vdots & \ddots & \ddots & \\ 1 & \cdots & 1 & 1 \end{pmatrix} \rightarrow \sigma^{-1} = \begin{pmatrix} 1 & & & 0 \\ -1 & 1 & & \\ & \ddots & \ddots & \\ 0 & & -1 & 1 \end{pmatrix}$$

Thus Theorem 1 leads us to the known result:

If $w \in \Omega + iV$, then one has

$$\operatorname{Re} \Delta^{\underline{e}_j \sigma^{-1}}(w) = \operatorname{Re} \Delta_{j-1}(w)^{-1} \Delta_j(w)$$

$$= \operatorname{Re} \frac{\Delta_j(w)}{\Delta_{j-1}(w)} > 0.$$

Talking plan

- (1) Background
 - (i) Theorem A
- (2) Generalization of Theorem A
 - (i) Setting and definitions
 - (ii) matrix realization of homogeneous cones
 - (iii) known results
 - (iv) Theorem 1 (generalization of Theorem A)
- (3) Characterization of symmetric cones
 - (i) dual cones
 - (ii) Main theorem (characterization of symmetric cones)
 - (iii) sketch of the proof

Dual cone

 Ω : homogeneous cone in V $\langle \cdot | \cdot \rangle$: inner product of V

Dual cone Ω^* of Ω is defined to be

$$\Omega^* := \left\{ x \in V; \; \langle \, x \, | \, y \,
angle > 0 \; \text{for all} \; y \in \overline{\Omega} ackslash \{0\}
ight\}.$$

 $\Delta_1^*(x),\ldots,\Delta_r^*(x)$: basic relative invariants of Ω^* the index is determined as the multiplier matrix σ_*

to be upper triangular

 Ω is irreducible $\Leftrightarrow \Omega = \Omega_1 \oplus \Omega_2$ implies $\Omega_1 = \{0\}$ or $\Omega_2 = \{0\}$.

Theorem (Yamasaki 2014)

Let Ω be an irreducible homogeneous cone.

Then Ω is symmetric if and only if

$$\{\deg \Delta_1,\ldots,\deg \Delta_r\}=\{\deg \Delta_1^*,\ldots,\deg \Delta_r^*\}=\{1,\ldots,r\}.$$

Example

$$V=\mathcal{S}_3 \ \Omega=\mathcal{S}_3^+$$
 and $\Omega^*=\mathcal{S}_3^+$ (symmetric cone)

$$V = \left\{ x = egin{pmatrix} x_1 & x_{21} & x_{31} \ x_{21} & x_2 & x_{32} \ x_{31} & x_{32} & x_3 \end{pmatrix}; \ x_i, x_{kj} \in \mathbb{R}
ight\}$$

The basic relative invariants are described as

$$egin{array}{ll} \Delta_1(x) &= x_1, & \Delta_1^*(x) &= \det x, \ \Delta_2(x) &= x_1 x_2 - x_{21}^2, & \Delta_2^*(x) &= x_3 x_2 - x_{32}^2, \ \Delta_3(x) &= \det x, & \Delta_3^*(x) &= x_3. \end{array}$$

The multiplier matrices is given as

$$\sigma = egin{pmatrix} 1 & 0 & 0 \ 1 & 1 & 0 \ 1 & 1 & 1 \end{pmatrix}, \quad \sigma_* = egin{pmatrix} 1 & 1 & 1 \ 0 & 1 & 1 \ 0 & 0 & 1 \end{pmatrix}.$$

Main theorem

Theorem 2

Suppose that Ω is irreducible. Then Ω is symmetric if and only if

$$\begin{array}{ll} (1) \,\operatorname{Re} \, \frac{\Delta_j(w)}{\Delta_{j-1}(w)} > 0 & \text{ for any } w \in \Omega + iV, \\ \\ (2) \,\operatorname{Re} \, \frac{\Delta_j^*(w^*)}{\Delta_{j+1}^*(w^*)} > 0 & \text{ for any } w^* \in \Omega^* + iV \end{array} \qquad (j=1,\ldots,r), \end{array}$$

where we put $\Delta_0(w)=1$ and $\Delta_{r+1}^*(w)=1$.

Key proposition

Proposition 3

Let au be a lower triangular matrix of integer elements with ones on the main diagonal. Assume

$$\operatorname{Re} \Delta^{\underline{e}_j \tau}(w) > 0 \quad (j = 1, \dots, r)$$

for any $w \in T_{\Omega}$. Then one has $\tau = \sigma^{-1}$.

From the condition (1), we obtain

$$\sigma^{-1} = egin{pmatrix} 1 & & & & \ -1 & 1 & & & \ & \ddots & \ddots & \ 0 & & -1 & 1 \end{pmatrix}$$

Algorithm for calculating multiplier matrix

$$egin{aligned} d_{kj} &:= \dim \mathcal{V}_{kj} \ (1 \leq j < k \leq r) \ d_i &:= {}^t(0,\ldots,0,d_{i+1,i},\ldots,d_{ri}) \ (i=1,\ldots,r-1). \end{aligned}$$
 For $i=1,\ldots,r-1$, we define $l_i^{(j)} = {}^t(l_{1i}^{(j)},\ldots,l_{ri}^{(j)}) \ (j=i,\ldots,r)$ $l_i^{(i)} &:= d_i \ (k=i), \ l_i^{(k+1)} &:= egin{cases} l_i^{(j)} - d_k & (l_{ii}^{(j)} > 0), \ l_i^{(j)} & (l_{ii}^{(j)} = 0) \end{cases}$

Moreover we set $arepsilon^{[i]}={}^t(arepsilon_{i+1,i},\ldots,arepsilon_{ri})\in\{0,1\}^{r-i}$ $(i=1,\ldots,r-1)$ by

$$arepsilon_{ki} = egin{cases} 1 & ext{if } l_{ik}^{(k)} > 0, \ 0 & ext{if } l_{ik}^{(k)} = 0 \end{cases} \quad (k=i+1,\ldots,r).$$

Algorithm for calculating multiplier matrix

Then σ is given as

$$\sigma = \mathcal{E}_{r-1}\mathcal{E}_{r-2}\cdots\mathcal{E}_1,$$

where

$$\mathcal{E}_i := egin{pmatrix} I_{i-1} & 0 & 0 \ 0 & 1 & 0 \ 0 & arepsilon^{[i]} & I_{n-i} \end{pmatrix}.$$

 σ^{-1} is described as

$$\sigma^{-1} = (\mathcal{E}_{r-1}\mathcal{E}_{r-2}\cdots\mathcal{E}_1)^{-1}$$

$$= \mathcal{E}_1^{-1}\mathcal{E}_2^{-1}\cdots\mathcal{E}_{r-1}^{-1}$$

$$= \begin{pmatrix} 1 \\ -\varepsilon_{21} & 1 \\ \vdots & \ddots \\ -\varepsilon_{r1} & -\varepsilon_{r2} & \cdots & 1 \end{pmatrix}.$$

Sketch of the proof

Since

$$egin{pmatrix} 1 & & & & & \ -arepsilon_{21} & 1 & & & \ drawtright & & \ddots & \ -arepsilon_{r1} & -arepsilon_{r2} & \cdots & 1 \end{pmatrix} = egin{pmatrix} 1 & & & & \ -1 & 1 & & \ & \ddots & \ddots & \ 0 & & -1 & 1 \end{pmatrix},$$

we have $(\varepsilon_{21}, \varepsilon_{31}, \ldots, \varepsilon_{r1}) = (1, 0, \ldots, 0)$.

Let $l_1^{(1)} = {}^t(d_{21}, \ldots, d_{r1}).$

By $arepsilon_{21}=1$, one has $d_{21}>0$ and

$$l_1^{(2)} = egin{pmatrix} d_{21} \ d_{31} - d_{32} \ dots \ d_{r1} - d_{r2} \end{pmatrix}$$

By $arepsilon_{31}=0$, one has $d_{31}-d_{32}=0$. Similarly $arepsilon_{k1}=0$ implies $d_{k1}-d_{k2}=0$ (k>3).

Sketch of the proof

Repetition of this arguments implies that

$$d_{k1} = d_{k2} = \cdots = d_{k,k-1} \quad (k = 2, \dots, r-1).$$

Similarly by σ_* , we obtain

$$d_{j+1,j} = d_{j+2,j} = \cdots = d_{rj} \quad (j = 1, \dots, r-1).$$

Thus there exists the common number $d = d_{kj} > 0 \quad (j < k)$. By the following theorem, Ω needs to be symmetric.

Theorem (Vinberg 1965)

If $\dim \mathcal{V}_{kj} = (\text{const})$, then Ω is a symmetric cone.

Counter example (Ishi-Nomura 2008)

$$V:=\left\{x=egin{pmatrix} x_1I_n & aI_n & \mathbf{b}\ aI_n & x_2I_n & \mathbf{c}\ t_\mathbf{b} & t_\mathbf{c} & x_3 \end{pmatrix}; & x_i,a\in\mathbb{R}\ \mathbf{b},\mathbf{c}\in\mathbb{R}^n \end{array}
ight\}, \ \Omega:=\left\{x\in V; \ x ext{ is positive definite}
ight\}.$$

 $\Delta_1(x),\ldots,\Delta_3(x)$ are given as

$$\begin{split} & \Delta_1(x) = x_1, \quad \Delta_2(x) = x_1 x_2 - a^2, \\ & \Delta_3(x) = x_1 x_2 x_3 + 2 a \left< \mathbf{b} \left| \mathbf{c} \right> - x_3 a^2 - x_2 \| \mathbf{b} \|^2 - x_1 \| \mathbf{c} \|^2. \end{split}$$

 Ω is not a symmetric cone if $n\geq 2$, but we have

$$\operatorname{Re}rac{\Delta_k(w)}{\Delta_{k-1}(w)}>0 \quad (w\in\Omega+iV,\;k=1,2,3).$$

In this case $\dim V_{21}=1$, $\dim V_{31}=n$, $\dim V_{32}=n$.

Thus we obtain

$$\sigma^{-1} = \begin{pmatrix} 1 & & \\ -1 & 1 & \\ 0 & -1 & 1 \end{pmatrix}.$$

References

- [1] H. Ishi, On symplectic representations of normal *j*-algebras and their application to Xu's realizations of Siegel domains, Differ. Geom. Appl., **24** (2006), 588–612.
- [2] H. Ishi and T. Nomura, *Tube domain and an orbit of a complex triangular group*, Math. Z., **259** (2008), 697–711.
- [3] H. Nakashima, *Basic relative invariants of homogeneous cones*, Journal of Lie Theory **24** (2014), 1013–1032.
- [4] H. Nakashima, Characterization of symmetric cones by means of the basic relative invariants, submitting.
- [5] E. B. Vinberg, The structure of the group of automorphisms of a homogeneous convex cone, Trans. Moscow Math. Soc., 13 (1965), 63–93.
- [6] T. Yamasaki, Studies on homogeneous cones and the basic relative invariants through skeleton, Doctoral thesis admitted to Kyushu university (2014)